3.1526 \(\int \frac{1}{\sqrt{-1+b x} \sqrt{3+b x}} \, dx\)

Optimal. Leaf size=19 \[ \frac{2 \sinh ^{-1}\left (\frac{1}{2} \sqrt{b x-1}\right )}{b} \]

[Out]

(2*ArcSinh[Sqrt[-1 + b*x]/2])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0050002, antiderivative size = 19, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {63, 215} \[ \frac{2 \sinh ^{-1}\left (\frac{1}{2} \sqrt{b x-1}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-1 + b*x]*Sqrt[3 + b*x]),x]

[Out]

(2*ArcSinh[Sqrt[-1 + b*x]/2])/b

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-1+b x} \sqrt{3+b x}} \, dx &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{4+x^2}} \, dx,x,\sqrt{-1+b x}\right )}{b}\\ &=\frac{2 \sinh ^{-1}\left (\frac{1}{2} \sqrt{-1+b x}\right )}{b}\\ \end{align*}

Mathematica [B]  time = 0.0115028, size = 39, normalized size = 2.05 \[ \frac{2 \sqrt{b x-1} \sin ^{-1}\left (\frac{1}{2} \sqrt{1-b x}\right )}{b \sqrt{1-b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-1 + b*x]*Sqrt[3 + b*x]),x]

[Out]

(2*Sqrt[-1 + b*x]*ArcSin[Sqrt[1 - b*x]/2])/(b*Sqrt[1 - b*x])

________________________________________________________________________________________

Maple [B]  time = 0.006, size = 64, normalized size = 3.4 \begin{align*}{\sqrt{ \left ( bx-1 \right ) \left ( bx+3 \right ) }\ln \left ({({b}^{2}x+b){\frac{1}{\sqrt{{b}^{2}}}}}+\sqrt{{b}^{2}{x}^{2}+2\,bx-3} \right ){\frac{1}{\sqrt{bx-1}}}{\frac{1}{\sqrt{bx+3}}}{\frac{1}{\sqrt{{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x-1)^(1/2)/(b*x+3)^(1/2),x)

[Out]

((b*x-1)*(b*x+3))^(1/2)/(b*x-1)^(1/2)/(b*x+3)^(1/2)*ln((b^2*x+b)/(b^2)^(1/2)+(b^2*x^2+2*b*x-3)^(1/2))/(b^2)^(1
/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-1)^(1/2)/(b*x+3)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.95455, size = 65, normalized size = 3.42 \begin{align*} -\frac{\log \left (-b x + \sqrt{b x + 3} \sqrt{b x - 1} - 1\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-1)^(1/2)/(b*x+3)^(1/2),x, algorithm="fricas")

[Out]

-log(-b*x + sqrt(b*x + 3)*sqrt(b*x - 1) - 1)/b

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x - 1} \sqrt{b x + 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-1)**(1/2)/(b*x+3)**(1/2),x)

[Out]

Integral(1/(sqrt(b*x - 1)*sqrt(b*x + 3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.14172, size = 32, normalized size = 1.68 \begin{align*} -\frac{2 \, \log \left ({\left | -\sqrt{b x + 3} + \sqrt{b x - 1} \right |}\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-1)^(1/2)/(b*x+3)^(1/2),x, algorithm="giac")

[Out]

-2*log(abs(-sqrt(b*x + 3) + sqrt(b*x - 1)))/b